Haskell DSP LibrarySource codeParentContentsIndex
DSP.Covariance
Portability portable
Stability experimental
Maintainer m.p.donadio@ieee.org
Description

This module contains routines to perform cross- and auto-covariance These formulas can be found in most DSP textbooks.

In the following routines, x and y are assumed to be of the same length.

Synopsis
cxy :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b) -> a -> Complex b
cxy_b :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b) -> a -> Complex b
cxy_u :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b) -> a -> Complex b
cxx :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> Complex b
cxx_b :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> Complex b
cxx_u :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> Complex b
Documentation
cxy
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> Array a (Complex b) y
-> a k
-> Complex b C_xy[k]

raw cross-covariance

We define covariance in terms of correlation.

Cxy(X,Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y] = Rxy(X,Y) - E[X]E[Y]

cxy_b
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> Array a (Complex b) y
-> a k
-> Complex b C_xy[k] / N
biased cross-covariance
cxy_u
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> Array a (Complex b) y
-> a k
-> Complex b C_xy[k] / (N-k)
unbiased cross-covariance
cxx
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> a k
-> Complex b C_xx[k]

raw auto-covariance

Cxx(X,X) = E[(X - E[X])(X - E[X])] = E[XX] - E[X]E[X] = Rxy(X,X) - E[X]^2

cxx_b
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> a k
-> Complex b C_xx[k] / N
biased auto-covariance
cxx_u
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x
-> a k
-> Complex b C_xx[k] / (N-k)
unbiased auto-covariance
Produced by Haddock version 0.4