| |||||||||||
| |||||||||||
Description | |||||||||||
Simple module for computing the various moments of a list Reference: Ross, NRiC | |||||||||||
Synopsis | |||||||||||
| |||||||||||
Documentation | |||||||||||
mean :: (Fractional a) => [a] -> a | |||||||||||
Compute the mean of a list Mean(X) = 1/N sum(i=1..N) x_i | |||||||||||
var :: (Fractional a) => [a] -> a | |||||||||||
Compute the variance of a list Var(X) = sigma^2 = 1/N-1 sum(i=1..N) (x_i-mu)^2 | |||||||||||
stddev :: (RealFloat a) => [a] -> a | |||||||||||
Compute the standard deviation of a list StdDev(X) = sigma = sqrt (Var(X)) | |||||||||||
avgdev :: (RealFloat a) => [a] -> a | |||||||||||
Compute the average deviation of a list AvgDev(X) = 1/N sum(i=1..N) |x_i-mu| | |||||||||||
skew :: (RealFloat a) => [a] -> a | |||||||||||
Compute the skew of a list Skew(X) = 1/N sum(i=1..N) ((x_i-mu)/sigma)^3 | |||||||||||
kurtosis :: (RealFloat a) => [a] -> a | |||||||||||
Compute the kurtosis of a list Kurt(X) = ( 1/N sum(i=1..N) ((x_i-mu)/sigma)^4 ) - 3 | |||||||||||
Produced by Haddock version 0.4 |