Haskell DSP LibrarySource codeParentContentsIndex
Numeric.Transform.Fourier.CT
Portability portable
Stability experimental
Maintainer m.p.donadio@ieee.org
Description
Cooley-Tukey algorithm for computing the FFT
Synopsis
fft_ct1 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> a -> (Array a (Complex b) -> Array a (Complex b)) -> Array a (Complex b)
fft_ct2 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> a -> (Array a (Complex b) -> Array a (Complex b)) -> Array a (Complex b)
Documentation
fft_ct1
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x[n]
-> a nrows
-> a ncols
-> (Array a (Complex b) -> Array a (Complex b)) FFT function
-> Array a (Complex b) X[k]
Cooley-Tukey algorithm doing row FFT's then column FFT's
fft_ct2
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x[n]
-> a nrows
-> a ncols
-> (Array a (Complex b) -> Array a (Complex b)) fft function
-> Array a (Complex b) X[k]
Cooley-Tukey algorithm doing column FFT's then row FFT's
Produced by Haddock version 0.4