|
| Numeric.Transform.Fourier.Goertzel | | Portability | portable | | Stability | experimental | | Maintainer | m.p.donadio@ieee.org |
|
|
|
|
|
| Description |
| This is an implementation of Goertzel's algorithm, which computes on
bin of a DFT. A description can be found in Oppenheim and Schafer's
Discrete Time Signal Processing, pp 585-587.
|
|
| Synopsis |
|
| cgoertzel :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> Complex a | | | cgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> a | | | rgoertzel :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> Complex a | | | rgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> a |
|
|
| Documentation |
|
| cgoertzel |
| :: (RealFloat a, Ix b, Integral b) | | | => Array b (Complex a) | x[n] | | -> b | k | | -> Complex a | X[k] | | Goertzel's algorithm for complex inputs |
|
|
| cgoertzel_power |
| :: (RealFloat a, Ix b, Integral b) | | | => Array b (Complex a) | x[n] | | -> b | k | | -> a | |X[k]|^2 | | Power via Goertzel's algorithm for complex inputs |
|
|
| rgoertzel |
| :: (RealFloat a, Ix b, Integral b) | | | => Array b a | x[n] | | -> b | k | | -> Complex a | X[k] | | Goertzel's algorithm for real inputs |
|
|
| rgoertzel_power |
| :: (RealFloat a, Ix b, Integral b) | | | => Array b a | x[n] | | -> b | k | | -> a | |X[k]|^2 | | Power via Goertzel's algorithm for real inputs |
|
|
| Produced by Haddock version 0.4 |