|
Numeric.Transform.Fourier.Goertzel | Portability | portable | Stability | experimental | Maintainer | m.p.donadio@ieee.org |
|
|
|
|
|
Description |
This is an implementation of Goertzel's algorithm, which computes on
bin of a DFT. A description can be found in Oppenheim and Schafer's
Discrete Time Signal Processing, pp 585-587.
|
|
Synopsis |
|
cgoertzel :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> Complex a | | cgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> a | | rgoertzel :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> Complex a | | rgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> a |
|
|
Documentation |
|
cgoertzel |
:: (RealFloat a, Ix b, Integral b) | | => Array b (Complex a) | x[n] | -> b | k | -> Complex a | X[k] | Goertzel's algorithm for complex inputs |
|
|
cgoertzel_power |
:: (RealFloat a, Ix b, Integral b) | | => Array b (Complex a) | x[n] | -> b | k | -> a | |X[k]|^2 | Power via Goertzel's algorithm for complex inputs |
|
|
rgoertzel |
:: (RealFloat a, Ix b, Integral b) | | => Array b a | x[n] | -> b | k | -> Complex a | X[k] | Goertzel's algorithm for real inputs |
|
|
rgoertzel_power |
:: (RealFloat a, Ix b, Integral b) | | => Array b a | x[n] | -> b | k | -> a | |X[k]|^2 | Power via Goertzel's algorithm for real inputs |
|
|
Produced by Haddock version 0.4 |