Haskell DSP LibrarySource codeParentContentsIndex
Numeric.Transform.Fourier.Goertzel
Portability portable
Stability experimental
Maintainer m.p.donadio@ieee.org
Description
This is an implementation of Goertzel's algorithm, which computes on bin of a DFT. A description can be found in Oppenheim and Schafer's Discrete Time Signal Processing, pp 585-587.
Synopsis
cgoertzel :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> Complex a
cgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b (Complex a) -> b -> a
rgoertzel :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> Complex a
rgoertzel_power :: (RealFloat a, Ix b, Integral b) => Array b a -> b -> a
Documentation
cgoertzel
:: (RealFloat a, Ix b, Integral b)
=> Array b (Complex a) x[n]
-> b k
-> Complex a X[k]
Goertzel's algorithm for complex inputs
cgoertzel_power
:: (RealFloat a, Ix b, Integral b)
=> Array b (Complex a) x[n]
-> b k
-> a |X[k]|^2
Power via Goertzel's algorithm for complex inputs
rgoertzel
:: (RealFloat a, Ix b, Integral b)
=> Array b a x[n]
-> b k
-> Complex a X[k]
Goertzel's algorithm for real inputs
rgoertzel_power
:: (RealFloat a, Ix b, Integral b)
=> Array b a x[n]
-> b k
-> a |X[k]|^2
Power via Goertzel's algorithm for real inputs
Produced by Haddock version 0.4