Haskell DSP LibrarySource codeParentContentsIndex
Numeric.Transform.Fourier.Rader
Portability portable
Stability experimental
Maintainer m.p.donadio@ieee.org
Description
Rader's Algorithm for computing prime length FFT's
Synopsis
fft_rader1 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> Array a (Complex b)
fft_rader2 :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> a -> (Array a (Complex b) -> Array a (Complex b)) -> Array a (Complex b)
Documentation
fft_rader1
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x[n]
-> a N
-> Array a (Complex b) X[k]
Rader's Algorithm using direct convolution
fft_rader2
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x[n]
-> a N
-> (Array a (Complex b) -> Array a (Complex b)) FFT function
-> Array a (Complex b) X[k]
Rader's Algorithm using FFT convolution
Produced by Haddock version 0.4