
Numeric.Transform.Fourier.FFT  Portability  portable  Stability  experimental  Maintainer  m.p.donadio@ieee.org 





Description 
FFT driver functions


Synopsis 

fft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) > Array a (Complex b)   ifft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) > Array a (Complex b)   rfft :: (Ix a, Integral a, RealFloat b) => Array a b > Array a (Complex b)   irfft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) > Array a b   r2fft :: (Ix a, Integral a, RealFloat b) => Array a b > Array a b > (Array a (Complex b), Array a (Complex b)) 


Documentation 

fft 
:: (Ix a, Integral a, RealFloat b)   => Array a (Complex b)  x[n]  > Array a (Complex b)  X[k]  This is the driver routine for calculating FFT's. All of the
recursion in the various algorithms are defined in terms of fft. 


ifft 
:: (Ix a, Integral a, RealFloat b)   => Array a (Complex b)  X[k]  > Array a (Complex b)  x[n]  Inverse FFT, including scaling factor, defined in terms of fft 


rfft 
:: (Ix a, Integral a, RealFloat b)   => Array a b  x[n]  > Array a (Complex b)  X[k]  This is the algorithm for computing 2Npoint real FFT with an Npoint
complex FFT, defined in terms of fft 


irfft 
:: (Ix a, Integral a, RealFloat b)   => Array a (Complex b)  X[k]  > Array a b  x[n]  This is the algorithm for computing a 2Npoint real inverse FFT with an
Npoint complex FFT, defined in terms of ifft 


r2fft 
:: (Ix a, Integral a, RealFloat b)   => Array a b  x1[n]  > Array a b  x2[n]  > (Array a (Complex b), Array a (Complex b))  (X1[k],X2[k])  Algorithm for 2 Npoint real FFT's computed with Npoint complex
FFT, defined in terms of fft 


Produced by Haddock version 0.4 