Haskell DSP LibrarySource codeParentContentsIndex
Numeric.Transform.Fourier.FFT
Portability portable
Stability experimental
Maintainer m.p.donadio@ieee.org
Description
FFT driver functions
Synopsis
fft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b)
ifft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a (Complex b)
rfft :: (Ix a, Integral a, RealFloat b) => Array a b -> Array a (Complex b)
irfft :: (Ix a, Integral a, RealFloat b) => Array a (Complex b) -> Array a b
r2fft :: (Ix a, Integral a, RealFloat b) => Array a b -> Array a b -> (Array a (Complex b), Array a (Complex b))
Documentation
fft
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) x[n]
-> Array a (Complex b) X[k]
This is the driver routine for calculating FFT's. All of the recursion in the various algorithms are defined in terms of fft.
ifft
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) X[k]
-> Array a (Complex b) x[n]
Inverse FFT, including scaling factor, defined in terms of fft
rfft
:: (Ix a, Integral a, RealFloat b)
=> Array a b x[n]
-> Array a (Complex b) X[k]
This is the algorithm for computing 2N-point real FFT with an N-point complex FFT, defined in terms of fft
irfft
:: (Ix a, Integral a, RealFloat b)
=> Array a (Complex b) X[k]
-> Array a b x[n]
This is the algorithm for computing a 2N-point real inverse FFT with an N-point complex FFT, defined in terms of ifft
r2fft
:: (Ix a, Integral a, RealFloat b)
=> Array a b x1[n]
-> Array a b x2[n]
-> (Array a (Complex b), Array a (Complex b)) (X1[k],X2[k])
Algorithm for 2 N-point real FFT's computed with N-point complex FFT, defined in terms of fft
Produced by Haddock version 0.4